Finite zero-simple semigroups over an elementary abelian group

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group Structures of Elementary Supersingular Abelian Varieties over Finite Fields

Let A be a supersingular abelian variety over a finite field k which is k-isogenous to a power of a simple abelian variety over k. Write the characteristic polynomial of the Frobenius endomorphism of A relative to k as f = g for a monic irreducible polynomial g and a positive integer e. We show that the group of k-rational points A(k) on A is isomorphic to (Z g(1) Z) unless A's simple component...

متن کامل

Group Structures of Elementary Supersingular Abelian Varieties over Nite Elds

Let A be a supersingular abelian variety over a nite eld k which is isogenous to a power of a simple abelian variety over k. Write the characteristic polynomial of the Frobenius endomorphism of A relative to k as f = g e for a monic irreducible polynomial g and a positive integer e, we show that the group of k-rational points A(k) on A is isomorphic to (Z=g(1)Z) e unless A's simple component is...

متن کامل

On the Maximal Cross Number of Unique Factorization Zero-sum Sequences over a Finite Abelian Group

Let S = (g1, · · · , gl) be a sequence of elements from an additive finite abelian group G, and let

متن کامل

Finite Simple Abelian Algebras

A finite universal algebra is called strictly simple if it is simple and has no nontrivial subalgebras. An algebra is said to be Abelian if for every term t(x, ȳ) and for all elements a, b, c̄, d̄, we have the following implication: t(a, c̄) = t(a, d̄) −→ t(b, c̄) = t(b, d̄). It is shown that every finite simple Abelian universal algebra is strictly simple. This generalizes a well known fact about Ab...

متن کامل

A New Finite Simple Group with Abelian 2-sylow Subgroups.

A 2-Sylow subgroup of J is elementary abelian of order 8 and J has no subgroup of index 2. If r is an involution in J, then C(r) = (r) X K, where K _ A5. Let G be a finite group with the following properties: (a) S2-subgroups of G are abelian; (b) G has no subgroup of index 2; and (c) G contains an involution t such that 0(t) = (t) X F, where F A5. Then G is a (new) simple group isomorphic to J...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1978

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700008029